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Thermodynamic instabilities in one-dimensional particle lattices: A finite-size scaling approach
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One-dimensional thermodynamic instabilities are phase transitions, not prohibited by Landau’s argument
because the energy of the domain wall which separates the two phases is infinite. Whether they actually occur
in a given system of particles must be demonstrated on a case-by-case basis by examining the properties of the
corresponding singular transfer integral~TI! equation. The present work deals with the generic Peyrard-Bishop
model of DNA denaturation. In the absence of exact statements about the spectrum of the singular TI equation,
I use Gauss-Hermite quadratures to achieve a single-parameter-controlled approach to rounding effects; this
allows me to employ finite-size scaling concepts in order to demonstrate that a phase transition occurs and to
derive the critical exponents.
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The absence of phase transitions in one-dimensional
tems is generally understood in terms of Landau’s argum
@1#, according to which, macroscopic phase coexistenc
and, by implication, a phase transition—cannot occur
cause the system splits into a macroscopic number of
mains; the spontaneous splitting is favored by entropy, wh
more than compensates for the energy needed to creat
domain walls~DWs!.

Landau’s argument provides us with a guide to excepti
from the general rule. For example, in lattice systems w
long-range harmonic interactions of the Kac-Baker-type
tential and af4 on-site potential, where a phase transiti
does occur at a finite temperature@2#, the DW energy di-
verges, and therefore Landau’s ‘‘no go’’ argument is not a
plicable. A similar situation arises in the generic instabil
model described by the Hamiltonian

H5(
n

F1

2
pn

21
1

2R
~yn2yn21!21V~yn!G , ~1!

where yn and pn are the transverse displacement and m
mentum, respectively, of thenth particle,V(y)5(e2y21)2

is an on-site Morse potential, andR is a parameter which
describes the relative strength of on-site and elastic inte
tions; all quantities are dimensionless. The model has b
proposed in a variety of physical contexts, such as the w
ting of interfaces@3# and the thermal denaturation of DN
@4#. In the case of Hamiltonian~1!, the DW is a static solu-
tion of infinite energy which interpolates between the sta
minimum and the metastable flat top of the Morse poten
@5#. Therefore, Landau’s argument cannot be invoked to
clude a phase transition. Whether a phase transition occu
not can only be definitively decided by an exact calculat
of the thermodynamic free energy.

In general, thermodynamic properties of Hamiltonian s
tems belonging@6# to class~1! can be calculated exactly b
the transfer integral~TI! method. Standard texts in statistic
mechanics impose restrictions on the type of admissible
site potentials, e.g., lim

y→6`
V(y)}uyus, s.0 @7#; such a

restriction—which explicitly excludes Eq.~1!—is useful in
the sense that it represents a sufficient condition for the
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istence of the partition function; at the same time, it enforc
the analyticity of the free energy as a function of tempe
ture, and therefore, the absence of phase transition@8–10#. In
fact, the crucial step in formulating the TI thermodynami
of Eq. ~1! demands the weaker condition for the existence
a complete, orthonormal set of eigenstates of the—poss
singular—integral equation

E
2`

`

dy8e2(1/2RT)(y82y)2
G~y,y8!fn~y8!5Lnfn~y!. ~2!

where, in general,

G~y,y8!5e2[V(y)1V(y8)]/(2T), ~3!

andT is the temperature. The limiting caseV50 ~harmonic
chain!, with its continuum, doubly degenerate spectrum
plane waves illustrates the above argument. In the more g
eral case of the Morse-like potentialsV(y), Eq. ~2! can be
shown to be singular because the corresponding kerne
similarly, non-Hilbert-Schmidt@11#. I am not aware of a gen
eral proof that a complete orthonormal set of eigenstates
ists for this class of Hamiltonians; assuming, however, fo
moment that this is the case, a phase transition~instability!
scenario is possible if the spectrum contains a discrete a
continuum part and the gap between them continuously
proaches zero at a certain finite temperature, i.e., the lo
tudinal correlation lengthj diverges@12#. This is exactly
what happens if we use the gradient-expansion approxi
tion ~valid for R!1 in the temperature range 1!T!1/R
@13#! to map Eq.~3! to a Schro¨dinger-like equation. The
validity of such a mapping is certainly questionable at lar
values of R. Therefore, it is legitimate to enquire abo
independent—and more general—methods of decid
whether a phase transition occurs. In the absence of e
statements about the spectrum of Eq.~2!, previous studies
have taken a pragmatic approach in the verification of
scenario described above; for example, in Ref.@14#, the in-
tegral on the left-hand side of Eq.~3! was cut off at a large
positive value ofy5ymax and evaluated on a grid of a give
size. This procedure effectively approximates Eq.~3! by a
real, symmetric, matrix eigenvalue problem. The numeri
©2003 The American Physical Society09-1
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procedure is considered satisfactory if the results do not
pend on two large parameters; the cutoff and the grid s
Other authors@11# have applied a Gauss-Legendre quad
tures procedure to approximate the integral in Eq.~3!; al-
though this is somewhat more efficient from the numeri
point of view, it still leaves two large parameters to be de
with. Therefore, the nature of the approach of the ma
eigenvalue problem to the limiting singular equation~2! re-
mains somewhat obscure; as a result, the skeptic may
@15#: does a phase transition really occur in the system
fined by Hamiltonian~1!?

In the present paper, I exploit the presence of the Ga
ian factors in the kernel, and approximate the integral in
left-hand side of Eq.~3! by using a Gauss-Hermite grid o
sizeN, i.e.,

E
2`

`

dȳe2 ȳ2
f ~ ȳ!' (

n51

N

wnf ~ ȳn!, ~4!

where positions and weights are given by the appropr
Gauss-Hermite quadratures routine. Besides the obvious
vantage of eliminating the cutoff from the numerical integ
tion, this allows me to identify the largest of the Gaus
Hermite roots,ȳN'(2N11)1/2[L with the ‘‘transverse size
of the system’’ and employ finite-size scaling concepts.
this fashion, the singular integral equation is approximated
the N→` limit of the sequence ofN3N matrix equations.

I use ‘‘rescaled’’ variables, i.e.,y5r ȳ, r5(2RT)1/2, and
divide both sides of Eq.~2! by rAp. This transforms Eq.~2!
to the matrix form

(
j 51

N

Di j Aj
n5e2en /TAi

n , ~5!

where

Di j 5S wiwj

p D 1/2

eȳi ȳ j
e2( ȳi2 ȳ j )2/2G~r ȳi ,r ȳ j ! ~6!

andLn /(2pRT)1/2[e2en /T. The advantage of the latter re
caling is that the ‘‘harmonic background’’ of the free ener
has now been absorbed in the prefactor; the lowest of
en ’s expresses the nontrivial part of the free energy.

I have solved numerically@16# the matrix eigenvalue
problem ~5! for R510.1 @5#, N5256,384,512,2048, an
temperatures in the range 0.85,T,1.30. Results for the dif-
ference between the two lowest eigenvalues are show
Fig. 1. At any given sizeL, the gap has a minimumDem(L)
at a certain temperatureTm(L). Figure 2 illustrates that~i!
the value of the gap approaches zero quadratically aL
→` to within 1025 and ~ii ! the sequence ofTm(L)’s also
approaches a limiting valueTc51.2276 quadratically.

I identify the limiting temperatureTc , where the spectra
gap of the limiting, infinite-dimensional matrix eigenvalu
equation~5! vanishes, as the transition temperature of
original TI equation~2!.

Near the critical temperatureTc , the various therma
properties of a finite-size system exhibit the competition
02610
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tween two transverse length scales; the size of the systeL
~hereL5(2N11)1/2) and the transverse correlation leng
j'5@^(dy)2&#1/2[@^y2&2^y&2#1/2. If Eq. ~2! has the same
critical properties as the Schro¨dinger-like equation derived
from it within the gradient-expansion approximation~e.g.,
Ref. @5#!, we expect, in the limit of infiniteL, a transverse
correlation lengthj'}utu2n' and an order parameter~OP!

FIG. 1. The gap between the two lowest eigenvalues of
matrix eigenvalue problem~5!, for a variety of N values. For a
given N, the gap has a minimum at a certain temperatureTm .

FIG. 2. The magnitude of the gap minimum~circles, righty-axis
scale! approaches zero as the system size goes to infinity. The
quence of the temperatures corresponding to the gap min
Tm(L) ~diamonds, lefty-axis scale!, can be used to provide a
estimate of the critical pointTc .
9-2
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^y&}utub with b52n'521 andt5T/Tc21. Then the or-
der parameter in the finite system scales as

^y&L5L f 1S L

j'
D , ~7!

FIG. 3. Finite-size scaling of the order parameter. The sca
variable reflects the choicen'51. Data from the neighborhood o
Tc, i.e., utu,0.1 for different values ofN tend to fall on the same
curve; this confirms the choice ofn' ; the asymptotic slope~dotted
line! reflects the propertyn'52b51 ~cf. text!.

FIG. 4. ‘‘Reduced’’ fluctuations of the order parameter for thr
different values ofN. The common intersection provides a furth
method to estimateTc from finite-N runs. Detail of the intersection
is shown in the inset, along with the estimateTc51.2276~dashed
line! obtained above~cf. Fig. 2!.
02610
where f 1(0)5const, andf 1(x)}1/x if x@1; the first prop-
erty follows from the requirement of bounded, nonzero OP
t502 and finiteL, and the second from the requirement
anL-independent limit at valuesL@j' ; the second property
guarantees thatb52n' , as expected. Figure 3 shows th
numerical results obtained for three different values ofN
scale properly ifn' is chosen to be equal to unity.

g
FIG. 5. Finite-size scaling of the gap.

FIG. 6. The three lowest eigenvalues of Eq.~5! at T51.5 ~full
symbols! for variousN. For comparison, the three lowest eigenva
ues of Eq.~5! with V50 ~harmonic chain! are shown~open sym-
bols!. The onset shows the same data plotted asen /(n/L)2 vs 1/L;
it demonstrates numerically that both sets of eigenvalues behav
(n/L)2 at largeL.
9-3
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Similarly, the OP fluctuations scale according to

^~dy!2&L
1/25L f 2S L

j'
D , ~8!

where nowf 2(0)5const, f 2(x)}1/x if x@1 @cf. above, fol-
lowing Eq. ~7!#.

As a consequence of Eqs.~7! and ~8!, the ratio

^~dy!2&L
1/2

^dy&L
5const ~9!

at t50 andany L. This provides a convenient graphical ru
for locating the critical point~cf. Fig. 4 and Ref.@17#!. The
rule is valid as long asb52n' , i.e., for both second and
first-order instabilities—in the latter case, of course, o
those with a continuously divergent OP.

The finite-size scaling of the gap is described according
the ansatz

DeL~ t !5L22f GS L

j'
D , ~10!

where nowf G(0)5const, f G(x)}x2 if x@1 ~cf. above!, and
as a result,De`(t)}utun with n52.

Numerical results shown in Fig. 5 demonstrate the va
ity of the ansatz~10!.

I conclude by presenting some typical results of the sp
tra of Eq.~5! at temperatures aboveTc . Figure 6 shows the
values obtained foren , n51,2,3, forT51.5 and variousN.
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For comparison, I have also plotted the corresponding res
obtained in the absence of the Morse potential~harmonic
crystal!; note that the system size in this case is twice
large, since there is no repulsive barrier at negativey. The
figure illustrates that in the limit of largeL, the spectra of
both systems behave asen}(n/L)2. In other words, a de-
tailed analysis of the spectra of Eq.~5! can be used to dem
onstrate that the thermodynamic properties of the hi
temperature phase coincide exactly with those of
harmonic chain. This completes the thermodynamic desc
tion of the instability of the particle lattice system as t
transition from a confined to a deconfined state.

In summary, I have demonstrated that it is possible
view the singular TI thermodynamics of one-dimensional l
tice systems with a nearest-neighbor harmonic coupling
a Morse on-site potential as the limit of a sequence of fin
matrix eigenvalue problems. The finite-size scaling prop
ties of the sequence are consistent with the universality
pothesis; in other words, the critical exponents of the lim
ing system withR510.1 are all identical with those obtaine
via the gradient expansion and the resulting Schro¨dinger-like
equation ~under the condition R!1). The procedure
described—and, in particular the vanishing of the gap in
limit of infinite system size—constitutes in effect a ‘‘proof
that a phase transition occurs within the framework of
exact TI thermodynamics.

I thank M. Peyrard, T. Dauxois and J. Ja¨ckle for helpful
discussions and comments.
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